AMIC® Chondro-Gide® in the Knee

More than 10 Years of Clinical Success

Geistlich Surgery
About Geistlich Surgery

Geistlich Surgery produces innovative bio-derived matrix products for bone and cartilage, including Orthoss®, Orthoss Collagen®, and Chondro-Gide®. Our products leverage the body’s own healing potential to regenerate bone and cartilage. Our focus is on helping people maintain and regain their quality of life.

Geistlich Surgery is a business unit of Geistlich Pharma AG, which is headquartered in Switzerland. Entirely family owned since 1851, the company develops, produces, and markets medical devices for regenerative medicine and pharmaceuticals. From research and development to marketing, our operations are fully integrated under one roof, which enables us to oversee and optimize all levels of our business.

Geistlich and Collagen

Geistlich was among the first pharmaceutical companies to apply collagen for medical use in the 1990s. With more than 160 years experience with bio-derived bone and collagen products, we applied our extensive knowledge of collagen and its biofunctionality to develop the first collagen membrane to foster regeneration by providing a protective environment for the cells and nutrients that are essential for regrowth.

As experts in bone and tissue regeneration, we see tremendous potential for collagen in the future of regenerative medicine. That is why we have dedicated a team of biochemists, materials scientists, process engineers, and other experts at our headquarters in Switzerland to focus exclusively on collagen, and to explore its other possible therapeutic applications.

Several studies report articular defects in 60–66% of knees undergoing arthroscopy for pain. Of these, 55% were larger than 2 cm² in size.¹

Through close relationships with the medical and scientific community, we continue to share our knowledge and optimize our collagen-derived products. Finding ways to improve people’s quality of life remains our larger goal.

CONTENTS

1 AMIC® for Knee Cartilage Regeneration
2 Developed to Support Regeneration: Chondro-Gide® and AMIC
4 AMIC Chondro-Gide
6 Mini-Open Surgery
8 Arthroscopic Surgery
10 Clinical Summaries
12 Rehabilitation and Follow-Up Treatment
13 Geistlich Surgery

Several studies report articular defects in 60–66% of knees undergoing arthroscopy for pain. Of these, 55% were larger than 2 cm² in size.¹
AMIC® for Knee Cartilage Regeneration

Your Challenge
As an orthopedic surgeon today, you face a growing number of treatment challenges. Patients are now living longer and are more physically active than previous generations. While many are staying active as they age, some are overweight.

With these changes in longevity and lifestyle, patients are using the major joints of their bodies more than ever. As a result, the number of patients with knee cartilage damage is rising. But with developments in diagnostic arthroscopy and Magnetic Resonance Imaging (MRI), early and precise detection and treatment is now possible.

The Solution
Chondro-Gide®, a bio-derived collagen membrane, combined with Autologous Matrix-Induced Chondrogenesis (AMIC) is a 1-step treatment for repairing cartilage lesions. Developed by Geistlich Surgery in collaboration with leading surgeons, AMIC uses bone marrow stimulation (BMS) in combination with Chondro-Gide to support the body’s own healing potential.

The Results
Backed by more than 10 years of clinical success, AMIC Chondro-Gide is an effective and cost-effective treatment for repairing cartilage lesions, alleviating or preventing pain, and slowing the progression of damage.

If the cartilage defect is not treated, deterioration will continue.

Cartilage continues to deteriorate after about 2 years for lesions >2–3 cm, resulting in discomfort pain and potentially leading to prosthesis.4, 6, 7, 8

Stable clinical results at 10 years after surgery. Your patient gains precious time and a symptom-free period without more invasive procedures.9

REGENERATION OF CARTILAGE BUYS PRECIOUS TIME

Early Cartilage Defect

No treatment
MFX alone
AMIC Chondro-Gide

Years After Surgery 0 1 2 3 4 5 6 7 8 9 10 11 12
Developed to Support Regeneration: Chondro-Gide® and AMIC®

Geistlich Pharma is a leader in the field of regenerative orthopedics, which leverages the body’s own ability to repair bone and cartilage.

A Better Alternative to Standard MFx

Standard MFx is commonly used in cartilage repair surgeries to recruit mesenchymal stem cells and other key bone marrow components to the site of the defect to support the regeneration of cartilage tissue. In larger lesions, the blood clot resulting from MFx is not stable enough to withstand shear forces in the joint.

AMIC Chondro-Gide addresses this problem by combining standard MFx with the use of a collagen membrane, which covers and protects not only the super clot but also the repair tissue. Chondro-Gide is a biocompatible and fully resorbable porcine collagen membrane developed by Geistlich for use in AMIC Chondro-Gide, a one-step procedure that is backed by more than 10 years of positive clinical results.

Effective for Both Large and Small Defects

AMIC Chondro-Gide was developed specifically to treat cartilage lesions in articular joint surfaces. While standard MFx is generally recommended for small chondral defects (< 2 cm²), AMIC Chondro-Gide is an effective solution for larger defects.

What Makes Chondro-Gide Unique

- Bio-derived, bilayer Collagen I/III membrane
- Biocompatible and naturally resorbed
- Easy to handle: supple and tear-resistant
- Can be glued or sutured
- Compatible with a range of tissue regeneration techniques
- One-step procedure
Bioengineered to Leverage the Body’s Own Healing Potential

Chondro-Gide® is a porcine bilayer Collagen I/III membrane. It has a unique structure, being compact and smooth on one side and rough and porous on the other. This provides a protective environment for the stabilization of tissue repair.14,16

CHONDRO-GIDE IS AVAILABLE IN THREE SIZES

The top layer of the membrane is marked with the word “UP” in one corner.

<table>
<thead>
<tr>
<th>Size</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 x 30 mm</td>
<td></td>
</tr>
<tr>
<td>30 x 40 mm</td>
<td></td>
</tr>
<tr>
<td>40 x 50 mm</td>
<td></td>
</tr>
</tbody>
</table>

A Sterile Aluminum Template is Included

The size and shape of the membrane patch can be determined with the sterile aluminum template.

38 x 48 mm

A Barrier to Prevent Cell Diffusion14,17

The smooth, compact top layer is also sturdy enough to protect the cells and newly forming cartilage from shear stress in the joint, while the cartilage regenerates and patients undergo rehabilitation.

A Rough, Porous Bottom Layer

This layer adheres to the defect, keeping the membrane in place. Cells that are released through MFx or other marrow stimulation techniques attach themselves to this layer, where they proliferate and produce new tissue.15,18

A Rough, Porous Bottom Layer

This layer adheres to the defect, keeping the membrane in place. Cells that are released through MFx or other marrow stimulation techniques attach themselves to this layer, where they proliferate and produce new tissue.15,18

The top layer of the membrane is marked with the word “UP” in one corner.

The size and shape of the membrane patch can be determined with the sterile aluminum template.

38 x 48 mm

A Barrier to Prevent Cell Diffusion14,17

The smooth, compact top layer is also sturdy enough to protect the cells and newly forming cartilage from shear stress in the joint, while the cartilage regenerates and patients undergo rehabilitation.

A Rough, Porous Bottom Layer

This layer adheres to the defect, keeping the membrane in place. Cells that are released through MFx or other marrow stimulation techniques attach themselves to this layer, where they proliferate and produce new tissue.15,18

A Rough, Porous Bottom Layer

This layer adheres to the defect, keeping the membrane in place. Cells that are released through MFx or other marrow stimulation techniques attach themselves to this layer, where they proliferate and produce new tissue.15,18
AMIC®
Chondro-Gide®

AMIC Chondro-Gide is a minimally-invasive 1-step procedure that can be performed either by mini-open surgery, or in an arthroscopic manner.

Developed by Geistlich Surgery in collaboration with leading surgeons in Europe, this technique has been effective in repairing chondral or osteochondral defects in the knee, talus, and hip.¹ ¹¹, ¹²

The Benefits of Using AMIC Chondro-Gide

With both mini-open and arthroscopic techniques, the unique advantage of AMIC Chondro-Gide is that it supports the body’s own potential to heal itself. Damaged cartilage is removed, and then the subchondral bone is microfractured or drilled to release supply of fresh, viable mesenchymal stem cells.

The membrane covers the defect and serves as a protective shield that contains the cells and minimizes the impact of shear forces on the delicate super clot. At the same time, it functions as the roof of a biological chamber that forms over the defect. The biocompatible collagen material provides an environment for cell growth¹⁶ and is replaced by new cartilage tissue over time.¹⁶

INDICATIONS FOR AMIC CHONDRO-GIDE

<table>
<thead>
<tr>
<th>Outerbridge / ICRS Classification</th>
<th>AMIC</th>
<th>Microfracture</th>
<th>Abrasion/Debridement (Lavage and Abrasion + Meniscus Smoothing)</th>
<th>No Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade II</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade III/IV</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defect (cm²)
INTENDED USE

Chondro-Gide® is used to cover cartilage defects treated with autologous chondrocyte implantation (ACI) or bone marrow stimulation techniques (e.g., AMIC® – Autologous Matrix Induced Chondrogenesis) and to cover meniscal or osteochondral defects. Surgical approaches include arthrotomy or arthroscopy. The defects can be acute or chronic and be caused by a fall, accident, or other traumatic events. Defects are located at articular cartilage surfaces including hyaline cartilage in the knee, hip, ankle foot, wrist, elbow, and shoulder; and fibrous cartilage including meniscus.

The defects can be acute or chronic and be caused by a fall, accident, or other traumatic events. Defects are located at articular cartilage surfaces including hyaline cartilage in the knee, hip, ankle foot, wrist, elbow, and shoulder; and fibrous cartilage including meniscus.

LIMITATIONS ON USE / PRECAUTIONS

Contraindications
Chondro-Gide should not be used in patients with:
> a known allergy to porcine collagen
> acute or chronic infection at surgical site
> acute or chronic inflammatory joint disease.

Precautions
> Chondro-Gide should only be used by surgeons, familiar with cartilage and meniscal repair techniques.
> Chondro-Gide should be used with special caution in patients who take medications or have diseases impairing tissue regeneration.
> Chondro-Gide should be used only under standard sterile surgical conditions.
> Use of non-powdered gloves should be considered when preparing and handling Chondro-Gide to prevent transfer of particulate to the surgical site.
> Insufficient fixation of the membrane can lead to its displacement.
> Consistent with clinical practice of cartilage repair, any axial limb malalignment, joint instability or meniscal pathologies should be treated in parallel or prior to the cartilage repair procedure.
> Abstinence from smoking during or after treatment is advised.
> Direct mixing of Chondro-Gide with medicinal products, alcohol, disinfectants or antibiotics is not advisable and has not been studied.

Side Effects
As Chondro-Gide is a collagen product, allergic reactions to collagen may not be totally excluded.

> Intraoperatively, if there is need to remove the product, complete removal can be achieved. In the postoperative phase, complete removal may not be possible since the product is intended to resorb over time
> There is no data available on the use of Chondro-Gide during pregnancy or lactation. For safety reasons, pregnant women and breastfeeding mothers should therefore not be treated with Chondro-Gide.
> The safety and efficacy of Chondro-Gide have not been studied in children.
> The template must not be implanted.
> The product is intended for single patient, single surgery use, the product must not be re-sterilized. Any unused material should be discarded.
Mini-Open Surgery

Prepare the Surgical Site
Using a standard, minimally invasive anterior approach, open the knee joint. Remove damaged and unstable cartilage with a scalpel, curette, and spoon until a stable, perpendicular shoulder surrounds the defect.

Measure the Defect
Place the sterile aluminum template included with the Chondro-Gide in the defect to obtain an exact impression of the defect. Cut out the imprint and transfer it onto the membrane. The side that was facing the defect must be placed on the smooth layer of the Chondro-Gide.

Trim the Chondro-Gide
When trimming the Chondro-Gide, remember to cut it 10–15% smaller than the template, as the area of the Chondro-Gide will expand once moistened. Supple and soft when wet, the membrane can be easily positioned to conform to defects of various shapes. If needed, use a sterile pen to lightly mark the smooth (top) layer that will face the joint cavity. The “UP” sign might not be visible any more once you have cut or hydrated the membrane.

Perforate the Bone
Use a sharp awl or drill to perforate the subchondral bone at the base of the lesion. Start at the periphery of the lesion and then move toward the center at intervals of 3-4 mm\(^2\). With adequate cooling, antegrade drilling is also possible.

Prior to surgery during diagnostic arthroscopy, carefully assess the size and classification of the defect. If necessary, carry out concomitant interventions, e.g., meniscal repair, alignment or stabilization.
Suturing Instead of Gluing

Using a TF-plus needle (inside-out technique, single stitches every 5 mm), attaching the Chondro-Gide with Vicryl or PDS 6/0 sutures is also possible.

Secure the Chondro-Gide®

Apply fibrin glue directly to the subchondral bone plate around the perforations.

Position and Glue the Chondro-Gide®

Place the Chondro-Gide into the defect with the rough (bottom) layer facing the bone surface.

Check the position of the membrane and close. Once the glue has set, after about 5 minutes, use a sharp scalpel to remove the excess fibrin glue carefully. To prevent delamination of the membrane, make sure the Chondro-Gide is flush with the edge of the defect.

Remove the Residual Tissue

Carefully remove the residual tissue and check for adequate subchondral bleeding.

Position and Glue the Chondro-Gide®

Place the Chondro-Gide into the defect with the rough (bottom) layer facing the bone surface.

Check the position of the membrane and close. Once the glue has set, after about 5 minutes, use a sharp scalpel to remove the excess fibrin glue carefully. To prevent delamination of the membrane, make sure the Chondro-Gide is flush with the edge of the defect.

Check to make sure the membrane is positioned properly and stable by bending and extending the knee 10 times. To complete the surgery, carefully stop the bleeding, and suture the wound. If applying a drain, use a non-suction drain.
Arthroscopic Surgery

Prepare the Surgical Site
Use a sharp curette to remove cartilage fragments and create smooth vertical defect walls.

Measure the Defect Size
Using a probe, measure the defect size. Turn the probe in different directions to determine the diameter and shape of the defect. Transfer the measurement in the same way onto the Chondro-Gide®.

Prepare the Chondro-Gide
Once the Chondro-Gide has been cut, moistened and is inside the joint, distinguishing the smooth from the rough layer might be difficult. Use a sterile pen to lightly mark the smooth (top) layer of the Chondro-Gide that will face the joint cavity.

When trimming the Chondro-Gide, remember to cut it 10–15% smaller than the defect itself, as the area of the Chondro-Gide will expand once moistened.

Microfracturing
Using a 1.2 mm K-wire, perforate the subchondral bone at the base of the lesion. Working from the periphery of the lesion towards the center, insert holes at intervals of 3–4 mm. With a shaver, carefully remove tissue fragments. Alternatively, you can use an awl or nanofracturing to perforate the subchondral bone.

Prior to surgery during diagnostic arthroscopy, carefully assess the size and classification of the defect. If necessary, carry out concomitant interventions, e.g., meniscal repair, alignment or stabilization.
Position the Chondro-Gide®

Use forceps or a clamp to place the membrane in the defect. To prevent delamination of the membrane, make sure the Chondro-Gide is sitting flush inside the defect.

Apply the Glue

Inject fibrin glue into the space between the Chondro-Gide and the defect. Apply the glue at the top of the lesion and then let it flow to the lower part.

Secure the Chondro-Gide

Using an arthroscopic probe, tap the membrane into place.

Remove the Excess Glue

With a probe or a shaver, remove the excess fibrin glue.

NOTE

In addition to the wet arthroscopic technique illustrated above, AMIC® can also be performed using a dry approach. The successful use of the dry technique has been described by different surgeons. Choose wet or dry AMIC as you prefer.

Check to make sure the membrane is positioned properly and stable by bending and extending the knee 10 times. To complete the surgery, carefully stop the bleeding, and suture the wound. If applying a drain, use a non-suction drain.
A 10-year follow-up study by Kaiser et al. investigated the use of AMIC® in the treatment of chondral and osteochondral defects in the knee. Average Lysholm Scores and Visual Analogue Scores (VAS) for pain improved significantly when the pre-operative values were compared to the results at 2- and 10-year post-operative. Importantly, the improvement of these key scores was maintained over the 2 to 10-year follow up. This study demonstrated that AMIC offers significant improvement over the pre-operative status as well as long-term durability of results.

AMIC Shows Better Performance Than MFx Alone After 5 Years in a randomized, controlled study

In a multi-center, randomized, controlled 3-arm study by Volz et al. a significant deterioration in results was seen after 2 years when the treatment was MFx alone without Chondro-Gide®

All treatment groups in the 3-arm study showed significant improvement in the first year, followed by stabilization at 2 years. However, at 5 years, results of the AMIC Chondro-Gide patients were different from those of the MFx only patients. Pain and function scores (ICRS and modified Cincinnati scores) remained stable or even improved with AMIC, while pain and function scores for the MFx group decreased after 2 years (figure 1).

Overall, the results of this study are consistent with the observations from other published studies that show positive mid-to long-term clinical results for AMIC, while clinical outcomes for patients treated with MFx alone show a decline in performance after 2 years.

First meta-analysis of 12 AMIC Chondro-Gide studies including 375 patients with a mean defect size of over 4 cm² demonstrates significant and sustainable improvement of knee function and pain

Most recently, (2019) in a systematic review and meta-analysis of AMIC outcomes, the authors evaluated grade III/IV chondral and osteochondral lesions in the knee with a mean defect size of 4.24 cm². The meta-analysis included 12 studies and compared VAS, Lysholm and IKDC scores between baseline and follow-up after 1 or 2 and more than 3 years. It demonstrated that the use of AMIC Chondro-Gide in defect sizes, which are above the recommended threshold for MFx, significantly reduced pain and improved function from baseline to follow-up. The clinical outcomes suggested that AMIC provides a clinical benefit for at least 5 years, some of the studies even show stable results after 7 years. This publication is the first me-

FIGURE 1: FUNCTIONAL STATUS OVER TIME

![Functional Status Over Time](image-url)
ta-analysis of a one-step cartilage repair technique with only one scaffold used (Chondro-Gide®).¹⁹

Significant and sustainable improvement of knee function and reduction of pain at 7 years
A retrospective analysis by Schiavone Panni et al.² noted that AMIC® was effective when treating full-thickness knee cartilage defects larger than 2 cm². Over an average 7-year follow-up, patients consistently showed significant clinical and functional improvement based on their International Knee Documentation Committee (IKDC), MRI, and Lysholm scores.

ACI-C and AMIC Chondro-Gide provide equally good results after 2 years
Most recently, Fossum, et al., (2019) conducted a prospective, randomized, controlled study to assess the outcomes of ACI-C and AMIC in chondral and osteochondral defects of the distal femur and patella. At 1 and 2 years, the mean function and pain scores were compared with baseline scores and showed significant improvement. No significant differences were seen between the outcomes of the ACI-C and AMIC techniques. The authors concluded that AMIC could be considered a clinically equal, but less expensive alternative to ACI-C, as AMIC is a 1-step procedure therefore far less resource-intensive.²⁷

Arthroscopic Surgery
Arthroscopic Technique Equally Positive as Mini-Arthroscopy with AMIC Chondro-Gide
In a retrospective study, Schagemann et al.²² compared the clinical outcomes of AMIC Chondro-Gide procedures that were performed as either arthroscopic or mini-open surgeries. The study followed patients for 2 years.

According to the patients’ Visual Analog Scale (VAS) pain scores, Lysholm scores, and Knee injury and Osteoarthritis Outcome Scores (KOOS), both surgical approaches yielded equally positive results.

Repairing Patellar Cartilage Lesions with AMIC Chondro-Gide
In another 2017 study, Sadlik et. al.²⁴ analyzed 12 patients who had undergone arthroscopic surgery using AMIC Chondro-Gide to repair patellar cartilage lesions. The Sadlik study assessed patients before surgery and at an average follow-up time of 38 months. Both clinical and radiological results improved significantly, according to criteria including KOOS, International Knee Documentation Committee (IKDC), Visual Analog Scale (VAS), Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) scores, and MRI.

Using augmented MFx in combination with Chondro-Gide, both arthroscopic and mini-open have been shown to be successful treatments for more than 10 years. Using augmented MFx with Chondro-Gide makes this technique even more effective, with enhanced healing and stability.

Beyond Microfracture
Designed to be used in combination with MFx and Autologous Chondrocyte Implantation (ACI), Chondro-Gide is equally well-suited to be used with other bone marrow stimulation techniques.²⁶,²⁹ The unique bilayer structure of the membrane is key. With a porous and a cell-occlusive layer, Chondro-Gide acts as both a cover or wrapper that encloses cell-rich material while also providing a protected environment for regeneration.

A review by Lee et al.³⁰ on AMIC and related techniques in the knee also documents the trend to add concentrated bone marrow-derived mesenchymal stem cells (MSCs) and Platelet-rich plasma, alone or in combination.

Bone marrow has been shown to be a possible source of multipotent stem cells with chondrogenic potential and can be harvested during the same surgical procedure. Gobbi et al.²⁸ used bone marrow-derived MSCs and Chondro-Gide for large full-thickness chondral lesions of the knee. They demonstrated lasting post-operative results up to 3 years.

Another approach, presently in Phase II, uses nasal chondrocytes. They can be easily accessed and demonstrated their capacity to support articulate cartilage repair.¹⁷ Cells from a nose biopsy are seeded and expanded on the Chondro-Gide, the structure of which is perfect for this tissue culture approach. It allows a simple loading of the cells on the rough layer, while the smooth cell occlusive layer keeps the cells in place. The cultured tissue is then sutured into the cartilage lesion site. First clinical results showed statistically significant improvements in all categories.²⁷
Within a few days after surgery, patients can begin partial weight-bearing, supporting a small amount of weight (up to 50%) using the operated leg. However, they should not try full weight-bearing for approximately 6 weeks. Patients should take a gradual approach to increasing activity, but by 6 months after surgery, most should be able to resume their regular sports activities.

Key factors in determining whether a patient has recovered and can return to sports activities are whether the patient’s state of healing has been accurately assessed, and whether the patient is ready to resume an active lifestyle.

As objective and subjective measures of healing often yield contradictory results, using both presents challenges in managing patient expectations.

In 2016, researchers correlated the results of subjective assessments, such as International Knee Documentation Committee (IKDC) and Lysholm scores, with objective isokinetic tests in patients who had undergone arthroscopic AMIC® in the knee. The results showed that while both objective and subjective measures were useful in monitoring a patient’s overall rehabilitation progress, the IKDC and Lysholm tests were particularly useful in determining a patient’s general state of recovery and readiness to return to sports activities.

Rehabilitation and Follow-Up Treatment

Postoperative Rehabilitation after Cartilage Repair in the Knee

<table>
<thead>
<tr>
<th>Stationary Phase</th>
<th>Active, Weight-Bearing</th>
<th>Passive Mobilization</th>
<th>Active Mobilization</th>
<th>Bandage/Orthesis</th>
<th>Sports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to first mobilization, position the knee post-op in full extension in a splint and foam splint.</td>
<td>W0–2 sole contact using crutches</td>
<td>W0–1 ROM 30°/0/0</td>
<td>W0–2 ROM 30°/0/0</td>
<td>First 4–6 weeks in order to ensure limitation of movement, thereafter progressive reduction</td>
<td></td>
</tr>
<tr>
<td>Mobilization on the first day by a physiotherapist</td>
<td>W3–4 partial weight bearing on crutches 10–15 kg</td>
<td>W2–3 ROM 60°/0/0</td>
<td>W3–4 ROM 60°/0/0</td>
<td>M2 post-op walking on soft surface</td>
<td></td>
</tr>
<tr>
<td>CPM/Kinetec: start with 30°/0/0 for ca. 2 hours/day (restricted by pain)</td>
<td>W5–6 partial weight bearing on crutches 10–15 kg</td>
<td>W5–6 ROM 120°/0/0</td>
<td>W5–6 ROM 90°/0/0</td>
<td>M2 post-op cycling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W6–7 transition to full weight bearing</td>
<td>CPM/Kinetec at home for ca. 3 hrs/d</td>
<td></td>
<td>M6 post-op jogging</td>
<td></td>
</tr>
<tr>
<td>(Femoro-patellar) Gentle Treatment with Corresponding Angles for the First 6 Months</td>
<td></td>
<td>Bicycle ergometer without resistance (max. 90°) from week 6 on: increase progressively from week 8 on (restricted by pain)</td>
<td></td>
<td>M6 post-op mountain biking</td>
<td></td>
</tr>
<tr>
<td>Extension in open chain: 90°–40°; full flexion in open chain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From W8: squat / flex 0°–40°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From W12: leg press 0°–60°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W = week, ROM = range of motion, M = month, hrs/d = hours per day

Note: This is only an example of a plan that was developed by an orthopedic surgeon (M. Steinwachs, Sport Clinic, Zürich, 2018). There is no agreement on one standardized algorithm in literature or among orthopedic societies.
To learn more about product availability please visit www.geistlich-surgery.com or contact the Geistlich distributor in your region.
To start using AMIC® Chondro-Gide® to alleviate or prevent patient pain and slow the progression of damage, contact your local Geistlich representative.